Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 MatterSim: DL-модель для предсказания свойств материалов от Microsoft.

MatterSim - усовершенствованная модель глубокого обучения в области материаловедения, предназначенная для моделирования свойств материалов в широком диапазоне элементов, температур и давлений. Она способна точно предсказывать свойства материалов по всей периодической таблице в диапазоне температур от 0 до 5000K и давления до 1000GPa.

MatterSim использует архитектуру M3GNet, которая включает в себя двух- и трехчастичные взаимодействия. Модель обучается с использованием функции потерь, учитывающей энергию на атом, вектор силы на каждом атоме и напряжение.

Особенность MatterSim - способность к активному и непрерывному обучению. Модель способна оценивать неопределенность своих прогнозов и выбирать структуры для активного обучения, что полезно для повышения точности моделирования сложных систем. MatterSim может быть настроена для моделирования на произвольном уровне теории.

Модель демонстрирует высокую точность в предсказании свободной энергии Гиббса и 10-кратное улучшение точности по сравнению с универсальными силовыми полями, обученными на траекториях релаксации на наборах данных MPF-TP и Random-TP.

Модель может быть точно настроена для атомистических симуляций на желаемом уровне теории или для прямых предсказаний "структура-свойство"с сокращением требований к данным до 97%.

▶️В релизе представлены 2 версии модели:

🟢MatterSim-v1.0.0-1M - мини-версия модели, которая работает быстрее;
🟢MatterSim-v1.0.0-5M - увеличенная версия, которая является более точной.

⚠️ Рекомендуется устанавливать MatterSim с помощью mamba или micromamba, поскольку conda может работать значительно медленнее при разрешении зависимостей в environment.yaml.

▶️ Установка и использование на примере ASE калькулятора:

# Install package with the latest version
pip install git+https://github.com/microsoft/mattersim.git

# Create env via mamba
mamba env create -f environment.yaml
mamba activate mattersim
uv pip install -e .
python setup.py build_ext --inplace

# Minimal example using ASE calculator
import torch
from ase.build import bulk
from ase.units import GPa
from mattersim.forcefield import MatterSimCalculator

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running MatterSim on {device}")

si = bulk("Si", "diamond", a=5.43)
si.calc = MatterSimCalculator(device=device)
print(f"Energy (eV) = {si.get_potential_energy()}")
print(f"Energy per atom (eV/atom) = {si.get_potential_energy()/len(si)}")
print(f"Forces of first atom (eV/A) = {si.get_forces()[0]}")
print(f"Stress[0][0] (eV/A^3) = {si.get_stress(voigt=False)[0][0]}")
print(f"Stress[0][0] (GPa) = {si.get_stress(voigt=False)[0][0] / GPa}")


📌Лицензирование: MIT License.


🟡Модель
🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DL #Mattersim #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pro_python_code/1630
Create:
Last Update:

🌟 MatterSim: DL-модель для предсказания свойств материалов от Microsoft.

MatterSim - усовершенствованная модель глубокого обучения в области материаловедения, предназначенная для моделирования свойств материалов в широком диапазоне элементов, температур и давлений. Она способна точно предсказывать свойства материалов по всей периодической таблице в диапазоне температур от 0 до 5000K и давления до 1000GPa.

MatterSim использует архитектуру M3GNet, которая включает в себя двух- и трехчастичные взаимодействия. Модель обучается с использованием функции потерь, учитывающей энергию на атом, вектор силы на каждом атоме и напряжение.

Особенность MatterSim - способность к активному и непрерывному обучению. Модель способна оценивать неопределенность своих прогнозов и выбирать структуры для активного обучения, что полезно для повышения точности моделирования сложных систем. MatterSim может быть настроена для моделирования на произвольном уровне теории.

Модель демонстрирует высокую точность в предсказании свободной энергии Гиббса и 10-кратное улучшение точности по сравнению с универсальными силовыми полями, обученными на траекториях релаксации на наборах данных MPF-TP и Random-TP.

Модель может быть точно настроена для атомистических симуляций на желаемом уровне теории или для прямых предсказаний "структура-свойство"с сокращением требований к данным до 97%.

▶️В релизе представлены 2 версии модели:

🟢MatterSim-v1.0.0-1M - мини-версия модели, которая работает быстрее;
🟢MatterSim-v1.0.0-5M - увеличенная версия, которая является более точной.

⚠️ Рекомендуется устанавливать MatterSim с помощью mamba или micromamba, поскольку conda может работать значительно медленнее при разрешении зависимостей в environment.yaml.

▶️ Установка и использование на примере ASE калькулятора:

# Install package with the latest version
pip install git+https://github.com/microsoft/mattersim.git

# Create env via mamba
mamba env create -f environment.yaml
mamba activate mattersim
uv pip install -e .
python setup.py build_ext --inplace

# Minimal example using ASE calculator
import torch
from ase.build import bulk
from ase.units import GPa
from mattersim.forcefield import MatterSimCalculator

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running MatterSim on {device}")

si = bulk("Si", "diamond", a=5.43)
si.calc = MatterSimCalculator(device=device)
print(f"Energy (eV) = {si.get_potential_energy()}")
print(f"Energy per atom (eV/atom) = {si.get_potential_energy()/len(si)}")
print(f"Forces of first atom (eV/A) = {si.get_forces()[0]}")
print(f"Stress[0][0] (eV/A^3) = {si.get_stress(voigt=False)[0][0]}")
print(f"Stress[0][0] (GPa) = {si.get_stress(voigt=False)[0][0] / GPa}")


📌Лицензирование: MIT License.


🟡Модель
🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DL #Mattersim #Microsoft

BY Python RU







Share with your friend now:
tg-me.com/pro_python_code/1630

View MORE
Open in Telegram


Python RU Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

Python RU from ua


Telegram Python RU
FROM USA